On the Convergence Rate of Decomposable Submodular Function Minimization
نویسندگان
چکیده
Submodular functions describe a variety of discrete problems in machine learn-ing, signal processing, and computer vision. However, minimizing submodularfunctions poses a number of algorithmic challenges. Recent work introduced aneasy-to-use, parallelizable algorithm for minimizing submodular functions thatdecompose as the sum of “simple” submodular functions. Empirically, this al-gorithm performs extremely well, but no theoretical analysis was given. In thispaper, we show that the algorithm converges linearly, and we provide upper andlower bounds on the rate of convergence. Our proof relies on the geometry ofsubmodular polyhedra and draws on results from spectral graph theory.
منابع مشابه
Revisiting Decomposable Submodular Function Minimization with Incidence Relations
We introduce a new approach to decomposable submodular function minimization (DSFM) that exploits incidence relations. Incidence relations describe which variables effectively influence the component functions, and when properly utilized, they allow for improving the convergence rates of DSFM solvers. Our main results include the precise parametrization of the DSFM problem based on incidence re...
متن کاملRandom Coordinate Descent Methods for Minimizing Decomposable Submodular Functions
Submodular function minimization is a fundamental optimization problem that arises in several applications in machine learning and computer vision. The problem is known to be solvable in polynomial time, but general purpose algorithms have high running times and are unsuitable for large-scale problems. Recent work have used convex optimization techniques to obtain very practical algorithms for ...
متن کاملEfficient Minimization of Decomposable Submodular Functions
Many combinatorial problems arising in machine learning can be reduced to the problem of minimizing a submodular function. Submodular functions are a natural discrete analog of convex functions, and can be minimized in strongly polynomial time. Unfortunately, state-of-the-art algorithms for general submodular minimization are intractable for larger problems. In this paper, we introduce a novel ...
متن کاملDecomposable Submodular Function Minimization: Discrete and Continuous
This paper investigates connections between discrete and continuous approaches for decomposable submodular function minimization. We provide improved running time estimates for the state-of-the-art continuous algorithms for the problem using combinatorial arguments. We also provide a systematic experimental comparison of the two types of methods, based on a clear distinction between level-0 and...
متن کاملProvable Submodular Minimization via Fujishige-Wolfe’s Algorithm∗
Owing to several applications in large scale learning and vision problems, fast submodular function minimization (SFM) has become a critical problem. Theoretically, unconstrained SFM can be performed in polynomial time [10, 11]. However, these algorithms are typically not practical. In 1976, Wolfe [22] proposed an algorithm to find the minimum Euclidean norm point in a polytope, and in 1980, Fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014